I) puissances positives et négatives

1) notations:

Quel que soit le nombre relatif a et quel que soit le nombre entier positif n, on a :

$$a^n = a \times a \times ... \times a$$

$$a^{n} = a \times a \times ... \times a$$

$$a^{-n} = \frac{1}{a^{n}} = \frac{1}{a \times a \times ... \times a}$$
avec $a \neq 0$

$$a^{0} = 1$$
avec $a \neq 0$

avec
$$a \neq 0$$

$$a^0 = 1$$
 avec $a \neq 0$

2) exemples:

$$3^4 = 3 \times 3 \times 3 \times 3 = 81$$
 3^4 se lit « 3 exposant 4 » ou « 3 puissance 4 » $5^{-2} = \frac{1}{5 \times 5} = \frac{1}{25} = 0,04$

3) cas particulier des puissances de 10

Quelque soit le nombre entier positif n, on a : n chiffres après la virgule

$$10^{n} = 100...0$$
 et $10^{-n} = 0,0...01$ n zéros n zéros

Exemples:

$$10^5 = 100\,000$$

et
$$10^{-4} = 0,0001$$

II) Utilisation des puissances de 10 pour les très grands et les très petits nombres

1) écriture scientifique

Un nombre positif est en notation scientifique quand il est écrit sous la forme : $|a \times 10^n|$ avec :

- a est un nombre décimal tel que $1 \le a < 10$
- n est un nombre entier relatif

exemples: 745 000 000 peut s'écrire 7.45×10^8

2) Unités	spécifiq	ues

exposant	puissance	valeur	préfixe	abrév
12	10 ¹²	mille milliards	téra	Т
9	10 ⁹	milliard	giga	G
6	106	million	méga	М
3	10 ³	millier	kilo	k
-3	10-3	millième	milli	m
-6	10-6	millionième	micro	μ
-9	10-9	milliardième	nano	n

3) manipulation des puissances dans les calculs :

a) exercice: Ecrire le résultat en notation scientifique :
$$A = \frac{8 \times 10^{11} \times (3 \times 10^{-3})^2}{4 \times 10^{-2}}$$

$$A = \frac{8 \times 10^{11} \times (3^{2}) \times (10^{-3})^{2}}{4 \times 10^{-2}} = \frac{8 \times 10^{11} \times 9 \times 10^{-6}}{4 \times 10^{-2}} = \frac{8 \times 9}{4} \times \frac{10^{11} \times 10^{-6}}{10^{-2}} = 18 \times 10^{(11-6-(-2))} = 18 \times 10^{7} = 1.8 \times 10^{8}$$

b) formules: Quel que soit le nombre relatif a et les nombres entiers relatifs m et n, on a :

$$a^m \times a^n = a^{m+n}$$

$$\boxed{a^m \times a^n = a^{m+n}} \qquad \boxed{\frac{a^m}{a^n} = a^{m-n}} \text{ avec } a \neq 0 \qquad \boxed{(a^m)^n = a^{m \times n}} \qquad \boxed{a^m \times b^m = (a \times b)^m}$$

$$(a^m)^n = a^{m \times n}$$

$$a^m \times b^m = (a \times b)^m$$

c) exemples:

$$3^2 \times 3^4 = 3^{2+4} = 3^6$$

$$(2^3)^4 = 2^{3 \times 4} = 3^{12}$$

$$\frac{4^5}{4^3} = 4^{5-3} = 4^2$$

$$(-3)^4 \times 2^4 = (-3 \times 2)^4 = (-6)^4$$