CH VII Triangles et cercles (5ème)

I) construire et utiliser des cercles

1) définitions

A désigne un point du plan et r un nombre positif.

- * Le cercle de centre A et de rayon r est l'ensemble des points du plan situés à la distance r du point A.
- * Le disque de centre A et de rayon r est l'ensemble des points du plan situés à une distance inférieure ou égale à r du point A.

2) exemples

Tracer le cercle centre O et de rayon OA = 3 cm.

Placer B sur le cercle tel que AB = 2 cm.

[AB] est une corde.

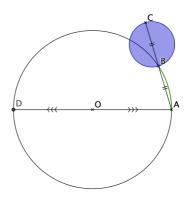
Soit C le symétrique de A par rapport à B.

Placer D symétrique de A par rapport à O.

[AD] est un diamètre du cercle

 \widehat{AB}^{\square} est un arc de cercle.

Tracer en bleu le disque de diamètre [BC].



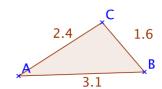
II) Construire des triangles

1) propriété (inégalité triangulaire)

Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

Exemple:

$$AB + BC = 3,1 + 2,4 =$$
5,5 et $AC = 2,4$ $AC < AB + BC$
 $AC + CB = 2,4 + 1,6 =$ **4** et $AB = 3,1$ $AB < AC + CB$
 $BA + AC = 3,1 + 2,4 =$ **5,5** et $CB = 1,6$ $BC < BA + AC$



2) conséquence :

Pour vérifier si un triangle est constructible, on vérifie que la plus grande longueur est inférieure à la somme des deux autres côtés.

Exemple:

Le triangle DEF est il constructible ? DE = 8 cm, EF = 5 cm et DF = 2,5 cm EF + DF = 5 + 2,5 = 7,5 < 8 = DE. Le triangle n'est pas constructible.

3) cas particulier des triangles plats (égalité triangulaire)

Soient A,B et C 3 points distincts.

- * Si B € [AC], alors AC = AB+BC
- * Si AC = AB + BC, alors B € [AC], les points sont alignés et on a un triangle plat ou aplati.

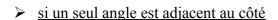
4) autres constructions possibles

a) avec une longueur et deux angles

> si les deux angles sont adjacents au côté

exemple: TRI avec TR = 7 cm, $\widehat{TRI} = 40^{\circ}$ et $\widehat{RTI} = 60^{\circ}$

- on trace le segment (sans oublier de nommer les points)
- on trace les angles en prolongeant
- on place le 3ème point.



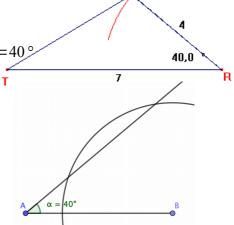
En utilisant la somme des angles du triangle, on se ramène au cas précédent.

exemple: AB = 5 cm;
$$\widehat{BAC} = 75^{\circ}$$
 et $\widehat{ACB} = 35^{\circ}$ $\widehat{ABC} = 180 - (75 + 35) = 180 - 110 = 70^{\circ}$

b) avec deux longueurs et un angle

> si l'angle est adjacent aux deux côtés donnés

<u>exemple</u>: Tracer le triangle TRI avec TR = 7 cm, RI = 4 cm et $\widehat{TRI} = 40^{\circ}$



40,0

60,0

> si l'angle est adjacent à un seul des côtés donnés

Dans ce cas, on n'est pas sûr que le triangle existe, ou il peut y avoir plusieurs dessins qui conviennent.

exemple:

Tracer le triangle ABC avec AB = 6 cm, BC = 4,5 cm et \widehat{BAC} = 40 °

5) triangles isométriques (triangles égaux)

a) définition

Deux triangles sont isométriques si les longueurs de leurs côtés sont égales deux à deux.

b) propriétés

- Si deux triangles ont deux de leurs longueurs égales deux à deux et que l'angle compris entre ces deux angles est le même, alors les triangles sont isométriques.
- Si deux triangles sont isométriques, alors leurs angles ont la même mesure deux à deux.

III) Triangles particuliers

